Consultants Guide to the Use of the SP22 Groundwater Sampler

Wes McCall, Geologist KS28, Geoprobe

SS #4 Slot Screen and Exp. Point on 2.25” Rods

Using MB6120 Actuator with GW4210 Check Valve for Development
SP22
Uses 2.25 in. (57mm) Probe Rods

What is it?
• A direct push installed groundwater sampling device
• Collect discrete interval groundwater samples
• Temporary Installation for characterization
• Use in unconsolidated formations

Why use it?
• This tool allows the operator to collect groundwater samples over a discrete interval
• Sample groundwater at multiple discrete depths at one location – profile
• Slug test to measure hydraulic conductivity (K) over discrete zones of the formation
• It can be decontaminated and re-used multiple times
• No need to install a monitoring well – cost savings
• Minimal formation disturbance
• No waste cuttings generated
The SP22 Groundwater Sampling System

The SP22 can be used in 3 different operating modes

1. Single Depth, Discrete Interval, Groundwater Sampler
2. Soil Coring and Groundwater Sampling
3. Multi-Depth, Discrete Interval, Groundwater Profiling

Each operating mode has its advantages and limitations. We will focus on mode 1 in this presentation.
Define target Interval
Select tooling/materials
Advance rods to depth
Set the screen
Develop the screen
Collect samples
Slug test for K (optional)
Trip out and grout
Decontaminate tools
Select next location/depth
Repeat the process

DQOs
Select Screen Material and Length

Select screen based on analyte type and desired length of sample interval. PVC screens require a screen head adapter. (MN 208316)

Options include:
Stainless Steel #4 slot X 1 ft (30 cm) *
Stainless Steel #4 slot X 4 ft (120 cm) (MN 208114)

¾” PVC #10 slot X 1 ft (30 cm) #
¾” PVC #10 slot X 5 ft (150 cm) (MN 203101)
Attaching 1.25” Rods to Screens

1.25” Rod to Stainless Screen

1.25” Rod to PVC Screen

Integral SS Screen and SS Head (MN 208238)

1.25-inch Std. probe rod X 48-inches MN 213769

GSA Photo Size Reference Guide

1.25-inch lite wt. rod X 48-inches MN 203988

SS Head (MN 208316) for PVC Screen
Adapters for Nominal $\frac{3}{4}$-inch PVC Riser

- PVC Riser to PVC Screen
- PVC Riser to Stainless Screen

Schd. 40 x 5ft x $\frac{3}{4}$-inch PVC riser (MN 201813)
Select the 2.25-inch Point Holder and Expendable Point

Use O-rings or equivalent on all expendable points!

Extended shank 2.25" point
Use under the 8040 in soft materials

- SP16 Point
- 209991
- 214033 (GW1555)
- 206861
- 203530

2.25” Std shank point
(MN 213788)
Select the sampling interval

Lithologic Log

- Clay
- Silty-Sandy Clay
- Sand ± silt
- Sand & Gravel
- Shale Bedrock

LL MiHpt Log

- EC (mS/m)
- HPT Press. Avg (psi)
- MIP - XSD

Abs. Piezometric Pressure (psi)

- 0 to 62
Select the sampling interval (cont.)

Bid Specification
Sampling Protocol:

• Start at depth of 10ft
• Sample every 5ft
• To depth of 70ft

How well with that work here?
Select the sampling interval (cont.)

Results of the Sampling Protocol:

- 10 ft – no yield
- 15 ft – no yield
- 20 ft – no yield
- 25 ft – no yield
- 30 ft – no yield
- 35 ft – success
- 40 ft – no yield?
- 45 ft – success
- 50 ft – success
- 55 ft – success
- 60 ft – success
- 65 ft – refusal at 62 ft
- 70 ft – refusal at 62 ft

Success rate = \(\frac{5}{13} \times 100 = 38.5\% \)
Select the sampling interval (cont.)

Eliminate the impossible intervals:

- 10 ft — no yield
- 15 ft — no yield
- 20 ft — no yield
- 25 ft — no yield
- 30 ft — no yield
- 35 ft — success
- 40 ft — no yield
- 45 ft — success
- 50 ft — success
- 55 ft — success
- 60 ft — success
- 65 ft — refusal at 62 ft
- 70 ft — refusal at 62 ft

Success rate = \(\frac{5}{6} \times 100 = 83.3\% \)
Advance Outer Casing to Base of Desired Screen Interval

Sequentially add rods to the tool string and advance the expendable point to the target depth for sampling.

The 2.25-inch OD rods have a 1.5-inch ID.
Select Riser or Inner Rod & Install Screen

1.25” inner rod

¾” PVC Riser

Use O-rings on each rod or PVC casing joint!
Retract Casing to Set Screen Over Target Interval

- Lower the screen and riser until it sits on top of the expendable point.
- While holding the screen in position retract the rods.
- The expendable point is dislodged and the screen begins to deploy.
- If the screen is fully deployed the screen head will lock into the point holder.
- At that point the riser will begin to move up with the outer casing.
Partial Deployment of Long Screens

When you need a shorter interval for your target zone

• With screen resting on expendable point
• Measure and place a reference mark on the riser
• Hold screen in position
• Retract outer casing to the reference mark

NOTE: Cannot run a slug test in a partially deployed SP22 screen (but you can in an SP16)
Water Level

It usually does not stabilize instantly!

Survey location & elevation
Development and Purging

Sample Quality?
Representativeness?

Sample Turbidity?
Define Data Quality Objectives

Increasing Data Quality

Screening

SemiQuan.

Quantitative

1 – 5 Liters

5 – 10 L

7 – 20 L

Ground

Water

Sample

Quality

Use your DQOs to guide you in the selection of appropriate sampling device(s) for your project. This will also control the amount of development needed.

The Project Managers Responsibility, not the drillers

Inertial pump

Peristaltic pump

Bladder pump

Increasing Development, Time & Cost

5 to 10 Min.

10 to 20+ Min.

20 to 30+ Min.
Development and Purging with Check Valve

Manual development with inertial pump

GW4210 for 1.25” rods
GW4220 for ¾” PVC

Always start development with the inertial pump (check valve)

Formation Yield?

12V Actuator
Purging and Sampling with MB470 Bladder Pump

Monitoring water quality while purging

Check Valve

Bladder Pump

Turbidity
No development with check valve before bladder pump purging/sampling.
Slug Test to Determine Hydraulic Conductivity (K)

Pneumatic slug test method for DP tools and wells: ASTM D 7242 (www.astm.org)

Geoprobe SOP: (http://geoprobe.com/pst-technical-documents)

Development is Required!
A nylon tremie tube can be used to grout bottom-up with bentonite or cement grouts

The 2.25” injection pull cap may be used for pressure grouting.

Is it really that easy?
Sand Heave and Bridging

In flowing sands ...

Trip out slowly and add water to the rods as retracting the screen. This will prevent sand heave into the rods.

Sand heave can bridge in the base of the rods and prevent grout from filling the borehole properly.
Summary

• Define your quality control objectives first
• Understand the local geology/hydrogeology
• Come to the field prepared with the correct materials
• Use O-rings to prevent cross contamination
• Work with the operator to assure depth & screen interval
• Use a reference mark on the casing when setting the screen
Summary

• Develop the formation before sampling and slug testing

• Water quality monitoring can be conducted

• Slug testing to determine discrete K zones is valuable, define migration pathways, seepage velocities, FLUX

• Abandon the borings properly to protect the groundwater resource!

• Document the sampling process
For additional information on the SP22 groundwater sampler and other Geoprobe groundwater and soil sampling tools please contact:

Geoprobe at 1-800-436-7762
or visit

www.geoprobe.com

Other on-line resources for the SP22 Groundwater Sampler:

Tool string diagram:
http://geoprobe.com/tool-string-diagrams/sp22-tsd

SP22 SOP:
http://geoprobe.com/literature/sp22-groundwater-sampler-sop
Further Topics for Consideration

• DT22 soil sampling combined with SP22 Groundwater sampling

• Multi-Interval, dual tube, depth discrete groundwater profiling with the SP22

• Hints and tips for successful SP22 sampling
Discrete Interval Groundwater Profiling with SP22

This is a “Dual Tube” technique

Step 1: Advance the dual tube tools the base of the target interval

Step 2: Retrieve the inner rods and solid drive point

Hydraulic Control!
Profiling with SP22 (cont.)

Setting the screen, development and sampling, and then tripping out the screen is the same as we saw above.

Don’t forget hydraulic control when tripping out the screen.
Profiling with SP22 (cont.)

Trip in solid drive point

Advance the dual tube rod string to the next target interval … repeat process …

Use the winch ... save your back !
Screen Deployment Detail

Use a reference mark on the casing to verify screen deployment.

Reference mark can be measured relative to ground surface to verify elevation of screen does not change as screen is deployed (or what the change is).
How do I set the screen to capture DNAPLS?

Depth and DNAPLs

Silty-Clay increasing sand with depth

Sand ± Gravel

DNAPL pool on impermeable layer

Impermeable layer
Depth and DNAPLs

Missed it! Screen too high

Base of Screen
Depth and DNAPLs

Missed It !! Screen still too high

Base of Screen
No Hydraulic Control
... Blocked Screen?

In very high K formations ...
with screen placed well below
the water level = large Δ head:

If no water is added to the rods
as the screen is opened fines in
the formation may be
entrained as water rushes into
the screen. The fines may be
“plastered” on the screen
clogging the slots and
preventing groundwater flow
into the screens.
A monitoring well installed 3 years ago has about 6-inches of LNAPL on top of the water. How should I use the SP22 to track the extent of the LNAPL body around this well?

Well was purposefully designed to screen across the water table to capture any “floating” product / LNAPLs.
Sampling LNAPLs

Of course you will set the SP22 screen across the water table to capture any “floating” product / LNAPLs.
Sampling LNAPLs

Hmmm ... one problem. When the SP22 is installed like this you get no water in the screen and no LNAPL.

So, what is wrong with that SP22 sampler?
Sampling LNAPLs

Let’s look at the lithologic log from this well and see what we can learn about the local hydrogeology.
Sampling LNAPLs

This is interesting, maybe we should look at more logs across the site ...
Sampling LNAPLs

More lithologic logs across the site ...

Silty clay, increasing fine sand with depth

Sand and Gravel

Low Permeability Bedrock
Sampling LNAPLs

The hydrogeologic interpretation ...

Silty clay, increasing fine sand with depth

Sand and Gravel

Low Permeability Bedrock
Sampling LNAPLs

Next let’s install several SP22s and see what we learn about the LNAPL
Sampling LNAPLs

How does the water level behave here?
Sampling LNAPLs

Water level is influenced by free product thickness.
Sampling LNAPLs

Water levels without free product

Groundwater flow
Sampling LNAPLs

How does the free product distribution look here?
Sampling LNAPLs

My interpretation based on the available data